Regulation of experience-dependent bidirectional chemotaxis by a neural circuit switch in Caenorhabditis elegans.
نویسندگان
چکیده
The nematode Caenorhabditis elegans changes its chemotaxis to NaCl depending on previous experience. At the behavioral level, this chemotactic plasticity is generated by reversing the elementary behaviors for chemotaxis, klinotaxis, and klinokinesis. Here, we report that bidirectional klinotaxis is achieved by the proper use of at least two different neural subcircuits. We simulated an NaCl concentration change by activating an NaCl-sensitive chemosensory neuron in phase with head swing and successfully induced klinotaxis-like curving. The curving direction reversed depending on preconditioning, which was consistent with klinotaxis plasticity under a real concentration gradient. Cell-specific ablation and activation of downstream interneurons revealed that ASER-evoked curving toward lower concentration was mediated by AIY interneurons, whereas curving to the opposite direction was not. These results suggest that the experience-dependent bidirectionality of klinotaxis is generated by a switch between different neural subcircuits downstream of the chemosensory neuron.
منابع مشابه
Sub-threshold CMOS Spiking Neuron Circuit Design for Navigation Inspired by C. elegans Chemotaxis
We demonstrate a spiking neural network for navigation motivated by the chemotaxis network of Caenorhabditis elegans. Our network uses information regarding temporal gradients in the tracking variable’s concentration to make navigational decisions. The gradient information is determined by mimicking the underlying mechanisms of the ASE neurons of C. elegans. Simulations show that our model is a...
متن کاملParallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans.
Caenorhabditis elegans shows chemotaxis to various odorants and water-soluble chemoattractants such as NaCl. Previous studies described the pirouette mechanism for chemotaxis, in which C. elegans quickly changes the direction of locomotion by using a set of stereotyped behaviors, a pirouette, in response to a decrease in the concentration of the chemical. Here, we report the discovery of a seco...
متن کاملAn Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion
A neural network can sustain and switch between different activity patterns to execute multiple behaviors. By monitoring the decision making for directional locomotion through motor circuit calcium imaging in behaving Caenorhabditis elegans (C. elegans), we reveal that C. elegans determines the directionality of movements by establishing an imbalanced output between the forward and backward mot...
متن کاملGonadal Maturation Changes Chemotaxis Behavior and Neural Processing in the Olfactory Circuit of Caenorhabditis elegans
Many animal species change their behavior according to their stage of development. However, the mechanisms involved in translating their developmental stage into the modifications of the neuronal circuits that underlie these behavioral changes remain unknown. Here we show that Caenorhabditis elegans changes its olfactory preferences during development. Larvae exhibit a weak chemotactic response...
متن کاملJapanese studies on neural circuits and behavior of Caenorhabditis elegans
The nematode Caenorhabditis elegans is an ideal organism for studying neural plasticity and animal behaviors. A total of 302 neurons of a C. elegans hermaphrodite have been classified into 118 neuronal groups. This simple neural circuit provides a solid basis for understanding the mechanisms of the brains of higher animals, including humans. Recent studies that employ modern imaging and manipul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 47 شماره
صفحات -
تاریخ انتشار 2014